GammaCHI: a package for the inversion and computation of the gamma and chi-square cumulative distribution functions (central and noncentral)

نویسندگان

  • Amparo Gil
  • Javier Segura
  • Nico M. Temme
چکیده

A Fortran 90 module GammaCHI for computing and inverting the gamma and chi-square cumulative distribution functions (central and noncentral) is presented. The main novelty of this package are the reliable and accurate inversion routines for the noncentral cumulative distribution functions. Additionally, the package also provides routines for computing the gamma function, the error function and other functions related to the gamma function. The module includes the routines cdfgamC, invcdfgamC, cdfgamNC, invcdfgamNC, errorfunction, inverfc, gamma, loggam, gamstar and quotgamm for the computation of the central gamma distribution function (and its complementary function), the inversion of the central gamma distribution function, the computation of the noncentral gamma distribution function (and its complementary function), the inversion of the noncentral gamma distribution function, the computation of the error function and its complementary function, the inversion of the complementary error function, the computation of: the gamma function, the logarithm of the gamma function, the regulated gamma function and the ratio of two gamma functions, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The bivariate noncentral chi-square distribution - A compound distribution approach

This paper proposes the bivariate noncentral chi-square (BNC) distribution by compounding the Poisson probabilities with the bivariate central chi-square distribution. The probability density and cumulative distribution functions of the joint distribution of the two noncentral chi-square variables are derived for arbitrary values of the correlation coefficient, degrees of freedom(s), and noncen...

متن کامل

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

Inequalities for Noncentral Chi-square Distributions

Noncentral chi-square distributions play an important role in statistics. They occur for instance as exact or limiting distributions of test statistics under alternatives. To examine the power functions of such tests we come across the problem of comparing distribution functions of noncentral chi-square variables. In this section inequalities are presented, which make such a comparison possible...

متن کامل

Non-Central Multivariate Chi-Square and Gamma Distributions

A 1 ( ) p -variate integral representation is given for the cumulative distribution function of the general p variate non-central gamma distribution with a non-centrality matrix of any admissible rank. The real part of products of well known analytical functions is integrated over arguments from ( , ).    To facilitate the computation, these formulas are given more detailed for 3. p  Furthe...

متن کامل

Frequency Analysis of Maximum Daily Rainfall in various Climates of Iran

    In this research in order to frequency analysis of maximum daily rainfall in various climates of Iran the data of 40 synoptic rain gauges collected in 40 years period i.e., 1973 to 2012 were used. These stations are located in various climates of Iran according to De Martonne climatic classification. At first, input of data to HYFA package was performed. The mentioned package includes seven...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 191  شماره 

صفحات  -

تاریخ انتشار 2015